Higher-order aberrations and their association with axial elongation in highly myopic children and adolescents

Author:

Xu YupengORCID,Deng Junjie,Zhang Bo,Xu XianORCID,Cheng Tianyu,Wang JingjingORCID,Xiong Shuyu,Luan Mengli,Zou Haidong,He XianguiORCID,Tang Chun,Xu XunORCID

Abstract

BackgroundVision-dependent mechanisms play a role in myopia progression in childhood. Thus, we investigated the distribution of ocular and corneal higher-order aberrations (HOAs) in highly myopic Chinese children and adolescents and the relationship between HOA components and 1-year axial eye growth.MethodsBaseline cycloplegic ocular and corneal HOAs, axial length (AL), spherical equivalent (SE), astigmatism and interpupillary distance (IPD) were determined for the right eyes of 458 highly myopic (SE ≤−5.0D) subjects. HOAs were compared among baseline age groups (≤12 years, 13–15 years and 16–18 years). Ninety-nine subjects completed the 1-year follow-up. Linear mixed model analyses were applied to determine the association between HOA components, other known confounding variables (age, gender, SE, astigmatism and IPD) and axial growth. A comparison with data from an early study of moderate myopia were conducted.ResultsAlmost all ocular HOAs and few corneal HOAs exhibited significant differences between different age groups (all p<0.05). After 1 year, only ocular HOA components was significantly negative associated with a longer AL, including secondary horizontal comatic aberration (p=0.019), primary spherical aberration (p<0.001) and spherical HOA (p=0.026). Comparing with the moderate myopia data, the association of comatic aberration with AL growth was only found in high myopia.ConclusionIn highly myopic children and adolescents, lower levels of annual ocular secondary horizontal comatic aberration changes, besides spherical aberrations, were associated with axial elongation. This suggests that ocular HOA plays a potential role in refractive development in high myopia.

Funder

National Key R&D Program

Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai

Medical-Engineering Funding of Shanghai Jiao Tong University

Excellent Discipline Leader Cultivation Program of Shanghai Three Year Action Plan on Strengthening Public Health System Construction

Shanghai Sailing Program

National Natural Science Foundation of China

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3