Development of the retina and its relation with myopic shift varies from childhood to adolescence

Author:

Jin PeiyaoORCID,Deng Junjie,Lv Minzhi,Sun Sifei,Zhu JianfengORCID,Xu XunORCID,He XianguiORCID,Zou Haidong

Abstract

AimsTo elucidate the influence of age and myopic shift on retinal development.MethodsThis 1-year longitudinal study included 769 participants aged 6–17 years. Cycloplegic refraction, axial length and swept-source optical coherence tomography were examined at baseline and follow-up. The thickness changes in the retina, ganglion cell complex (GCC) and outer retinal layers (ORL) in the macular region were calculated, and their relation with age and myopic shift was analysed with multiple linear regression analysis.ResultsThe thickness of the central foveal retinal layers was increased in children (<10 years) but unchanged or decreased in adolescents (>13 years). The thickness changes in the retina, GCC and ORL decreased with age (r=−0.24,–0.23, −0.15, respectively, all p<0.01). Multiple regression analysis showed that the changes in central foveal retinal thickness (RT) and GCC thickness were independently associated with age and baseline spherical equivalent (SE), while the changes in ORL thickness were associated with age and SE changes. In children 8–9 years, a greater increase was observed in central foveal ORL thickness in those with no myopic shift (p<0.01). The thickness of the most parafoveal and perifoveal retinal layers was less increased or more decreased in children <9 years with myopic shift (p<0.05).ConclusionsRetinal development and its relation with myopic shift varies from childhood to adolescence. Myopia-related retinal thinning may result from less increase in the RT in childhood rather than a decrease in RT in adolescents. Children under 9 years old could be at a critical age for future myopia-related retinal thinning.

Funder

Key Discipline of Public Health–Eye Health in Shanghai

Overseas High-end Research Team–Eye Health in Shanghai

Shanghai Sailing Program

Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai

China Scholarship Council

Excellent Discipline Leader Cultivation Program of Shanghai Three Year Action Plan on Strengthening Public Health System Construction

Three-year Action Program of Public Health

National Key R&D Program

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3