Abstract
BackgroundHigh-frequency optical coherence tomography (HF-OCT) is an intravascular imaging method that allows for volumetric imaging of flow diverters in vivo.ObjectiveTo examine the hypothesis that a threshold for both volume and area of communicating malapposition can be predictive of early aneurysm occlusion.MethodsFifty-two rabbits underwent elastase aneurysm formation, followed by treatment with a flow diverter. At the time of implant, HF-OCT was acquired to study the rate and degree of communicating malapposition. Treated aneurysms were allowed to heal for either 90 or 180 days and euthanized following catheter angiography. Healing was dichotomized into aneurysm remnant or neck remnant/complete occlusion. Communicating malapposition was measured by HF-OCT using a semi-automatic algorithm able to detect any points where the flow diverter was more than 50 µm from the vessel wall. This was then summed across image slices to either a volume or area. Finally, a subsampled population was used to train a statistical classifier for the larger dataset.ResultsNo difference in occlusion rate was found between device type or follow-up time (p=0.28 and p=0.67, respectively). Both volume and area of malapposition were significantly lower in aneurysms with a good outcome (p<0.001, both). From the statistical model, a volume of less than 0.56 mm3 or a normalized area less than 0.69 as quantified by HF-OCT was predictive of occlusion (p<0.001, each).ConclusionsHF-OCT allows for measurements of both volume and area of malapposition and, from these measurements, an accurate prediction for early aneurysm occlusion can be made.
Funder
Stryker Neurovascular
Massachusetts Life Sciences Center
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献