Abstract
BackgroundCerebral infarctions resulting from iatrogenic air embolism (AE), mainly caused by small air bubbles, are a well-known and often overlooked event in endovascular interventions. Despite their significance, the underlying pathophysiology remains largely unclear.MethodsIn 24 rats, AEs were induced using a microcatheter, positioned in the carotid artery via femoral access. Rats were divided into two study groups, based on the size of the bubbles (85 and 120 µm) and two sub-groups, differing in air volume (0.39 and 0.64 µl). Ultra-high-field magnetic resonance imaging (MRI) was performed 1.5 hours after intervention. MRI findings including the number, single volume and total volume of the infarctions were assessed. A software-based numerical simulation was performed to qualitatively assess the microvascular pathomechanisms.ResultsIn the study groups 22 of 24 rats (92%) revealed cerebral infarctions. The number of infarctions per rat was higher for the smaller bubbles, for the lower (medians: 5 vs 3; p=0.049) and higher air volume sub-groups (medians: 6 vs 4; p=0.012). Correspondingly, total infarction volume was higher for the smaller bubbles (1.67 vs 0.5 mm³; p=0.042). Simulations confirmed the results of the experiments and suggested that fusion of microbubbles to larger bubbles is the underlying pathomechanism of vascular occlusions.ConclusionIn iatrogenic AE, the size of the bubbles can have a major impact on the number and total volume of cerebral infarctions. These findings can help to better understand the pathophysiology of this frequent, often underestimated adverse event in endovascular interventions.
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献