Identifying and quantifying variation between healthcare organisations and geographical regions: using mixed-effects models

Author:

Abel GaryORCID,Elliott Marc NORCID

Abstract

When the degree of variation between healthcare organisations or geographical regions is quantified, there is often a failure to account for the role of chance, which can lead to an overestimation of the true variation. Mixed-effects models account for the role of chance and estimate the true/underlying variation between organisations or regions. In this paper, we explore how a random intercept model can be applied to rate or proportion indicators and how to interpret the estimated variance parameter.

Funder

Public Health England

Publisher

BMJ

Subject

Health Policy

Reference20 articles.

1. Quality improvement methods in clinical medicine;Plsek;Pediatrics,1999

2. Empirical Bayes methods for estimating hospital-specific mortality rates;Thomas;Stat Med,1994

3. Medical profiling: improving standards and risk adjustments using hierarchical models;Burgess;J Health Econ,2000

4. Statistical issues in reporting quality data: small samples and casemix variation;Zaslavsky;Int J Qual Health Care,2001

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3