Development and validation of a prediction model for insulin-associated hypoglycemia in non-critically ill hospitalized adults

Author:

Mathioudakis Nestoras NicolasORCID,Everett Estelle,Routh Shuvodra,Pronovost Peter J,Yeh Hsin-ChiehORCID,Golden Sherita Hill,Saria Suchi

Abstract

ObjectiveTo develop and validate a multivariable prediction model for insulin-associated hypoglycemia in non-critically ill hospitalized adults.Research design and methodsWe collected pharmacologic, demographic, laboratory, and diagnostic data from 128 657 inpatient days in which at least 1 unit of subcutaneous insulin was administered in the absence of intravenous insulin, total parenteral nutrition, or insulin pump use (index days). These data were used to develop multivariable prediction models for biochemical and clinically significant hypoglycemia (blood glucose (BG) of ≤70 mg/dL and <54 mg/dL, respectively) occurring within 24 hours of the index day. Split-sample internal validation was performed, with 70% and 30% of index days used for model development and validation, respectively.ResultsUsing predictors of age, weight, admitting service, insulin doses, mean BG, nadir BG, BG coefficient of variation (CVBG), diet status, type 1 diabetes, type 2 diabetes, acute kidney injury, chronic kidney disease (CKD), liver disease, and digestive disease, our model achieved a c-statistic of 0.77 (95% CI 0.75 to 0.78), positive likelihood ratio (+LR) of 3.5 (95% CI 3.4 to 3.6) and negative likelihood ratio (−LR) of 0.32 (95% CI 0.30 to 0.35) for prediction of biochemical hypoglycemia. Using predictors of sex, weight, insulin doses, mean BG, nadir BG, CVBG, diet status, type 1 diabetes, type 2 diabetes, CKD stage, and steroid use, our model achieved a c-statistic of 0.80 (95% CI 0.78 to 0.82), +LR of 3.8 (95% CI 3.7 to 4.0) and −LR of 0.2 (95% CI 0.2 to 0.3) for prediction of clinically significant hypoglycemia.ConclusionsHospitalized patients at risk of insulin-associated hypoglycemia can be identified using validated prediction models, which may support the development of real-time preventive interventions.

Funder

National Center for Advancing Translational Sciences

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

BMJ

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3