Affiliation:
1. Research Institute of Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
2. Institute of Smart Computing Technologies, Riga Technical University, LV-1048 Riga, Latvia
3. Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
4. Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany
5. SIA “R4U”, LV-1016 Riga, Latvia
Abstract
Background: New methods of continuous glucose monitoring (CGM) provide real-time alerts for hypoglycemia, hyperglycemia, and rapid fluctuations of glucose levels, thereby improving glycemic control, which is especially crucial during meals and physical activity. However, complex CGM systems pose challenges for individuals with diabetes and healthcare professionals, particularly when interpreting rapid glucose level changes, dealing with sensor delays (approximately a 10 min difference between interstitial and plasma glucose readings), and addressing potential malfunctions. The development of advanced predictive glucose level classification models becomes imperative for optimizing insulin dosing and managing daily activities. Methods: The aim of this study was to investigate the efficacy of three different predictive models for the glucose level classification: (1) an autoregressive integrated moving average model (ARIMA), (2) logistic regression, and (3) long short-term memory networks (LSTM). The performance of these models was evaluated in predicting hypoglycemia (<70 mg/dL), euglycemia (70–180 mg/dL), and hyperglycemia (>180 mg/dL) classes 15 min and 1 h ahead. More specifically, the confusion matrices were obtained and metrics such as precision, recall, and accuracy were computed for each model at each predictive horizon. Results: As expected, ARIMA underperformed the other models in predicting hyper- and hypoglycemia classes for both the 15 min and 1 h horizons. For the 15 min forecast horizon, the performance of logistic regression was the highest of all the models for all glycemia classes, with recall rates of 96% for hyper, 91% for norm, and 98% for hypoglycemia. For the 1 h forecast horizon, the LSTM model turned out to be the best for hyper- and hypoglycemia classes, achieving recall values of 85% and 87% respectively. Conclusions: Our findings suggest that different models may have varying strengths and weaknesses in predicting glucose level classes, and the choice of model should be carefully considered based on the specific requirements and context of the clinical application. The logistic regression model proved to be more accurate for the next 15 min, particularly in predicting hypoglycemia. However, the LSTM model outperformed logistic regression in predicting glucose level class for the next hour. Future research could explore hybrid models or ensemble approaches that combine the strengths of multiple models to further enhance the accuracy and reliability of glucose predictions.
Funder
State Research Programme project in biomedical, medical technologies and pharmaceuticals
Austrian Science Fund
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献