Physiological effects of subthalamic nucleus deep brain stimulation surgery in cervical dystonia

Author:

Wagle Shukla Aparna,Ostrem Jill L,Vaillancourt David E,Chen Robert,Foote Kelly D,Okun Michael S

Abstract

BackgroundSubthalamic nucleus deep brain stimulation (STN DBS) surgery is clinically effective for treatment of cervical dystonia; however, the underlying physiology has not been examined. We used transcranial magnetic stimulation (TMS) to examine the effects of STN DBS on sensorimotor integration, sensorimotor plasticity and motor cortex excitability, which are identified as the key pathophysiological features underlying dystonia.MethodsTMS paradigms of short latency afferent inhibition (SAI) and long latency afferent inhibition (LAI) were used to examine the sensorimotor integration. Sensorimotor plasticity was measured with paired associative stimulation paradigm, and motor cortex excitability was examined with short interval intracortical inhibition and intracortical facilitation. DBS was turned off and on to record these measures.ResultsSTN DBS modulated SAI and LAI, which correlated well with the acute clinical improvement. While there were no changes seen in the motor cortex excitability, DBS was found to normalise the sensorimotor plasticity; however, there was no clinical correlation.ConclusionModulation of sensorimotor integration is a key contributor to clinical improvement with acute stimulation of STN. Since the motor cortex excitability did not change and the change in sensorimotor plasticity did not correlate with clinical improvement, STN DBS demonstrates restricted effects on the underlying physiology.Clinical trial registrationNCT01671527.

Funder

NIH

Publisher

BMJ

Subject

Psychiatry and Mental health,Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3