Pain control due to botulinum toxin therapy in cervical dystonia relates to the sensorimotor integration process

Author:

Wagle Shukla Aparna,Chen Robert,Hu Wei

Abstract

Background: Botulinum toxin (BoNT) injections have been found to improve pain symptoms of isolated cervical dystonia (CD). In addition to muscle relaxation at the peripheral level, few studies suggest that BoNT has effects on the central brain circuitries. The effects of BoNT on central circuitries that may be pain-related have not been examined. We probed these central effects with transcranial magnetic stimulation (TMS) techniques in a CD cohort presenting with significant pain.Methods: TMS-based measures of sensorimotor integration that are mediated through central processes, such as the short and long latency afferent inhibition (SAI and LAI) and measures for motor cortical excitability including short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were recorded. These measures were recorded at specific interstimulus intervals (ISI) using paired-pulse paradigms before and after the peak effects of BoNT injections. Normative TMS data from age-matched healthy controls were collected for comparisons. Clinical pain symptoms were recorded with Toronto Western spasmodic rating scale (TWSTRS)-pain and a visual analog scale (VAS).Results: Eleven CD subjects (mean age ±SD, 53.1 ± 6.3 years) and 10 age-matched healthy controls were enrolled. SAI was found to be increased in CD patients at baseline, however at the time of peak BoNT effects, it revealed a significant change with normalization to healthy control data (SAI ISI 20 ms, p = 0.001; SAI ISI 30 ms, p = 0.03). The change in SAI correlated with improvements in pain levels assessed with TWSTRS-pain and VAS and the total dose of BoNT injected (corrected for multiple correlations). LAI, SICI, and ICF measures were similar to the healthy controls and remained unchanged with BoNT therapy.Conclusion: Pain control in CD from BoNT therapy relates to modulation of sensorimotor integration at the cortical level.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3