Abstract
IntroductionPatients with tuberculosis (TB) often experience difficulties in accessing diagnosis and treatment. Patient pathway analysis identifies mismatches between TB patient care-seeking patterns and service coverage, but to date, studies have only employed cross-sectional aggregate data.MethodsWe developed an algorithmic approach to analyse and interpret patient-level routine data on healthcare use and to construct patients’ pathways from initial care-seeking to treatment outcome. We applied this to patients with TB in a simple random sample of one million patients’ records in the Taiwan National Health Insurance database. We analysed heterogeneity in pathway patterns, delays, service coverage and patient flows between different health system levels.ResultsWe constructed 7255 pathways for 6258 patients. Patients most commonly initially sought care at the primary clinic level, where the capacity for diagnosing TB patients was 12%, before eventually initiating treatment at higher levels. Patient pathways are extremely heterogeneous prior to diagnosis, with the 10% most complex pathways accounting for 48% of all clinical encounters, and 55% of those pathways yet to initiate treatment after a year. Extended consideration of alternative diagnoses was more common for patients aged 65 years or older and for patients with chronic lung disease.ConclusionOur study demonstrates that longitudinal analysis of routine individual-level healthcare data can be used to generate a detailed picture of TB care-seeking pathways. This allows an understanding of several temporal aspects of care pathways, including lead times to care and the variability in patient pathways.
Funder
Medical Research Council
Taiwan Ministry of Science and Technology
Taiwan National Health Research Institutes
Subject
Public Health, Environmental and Occupational Health,Health Policy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献