Studying expressions of loneliness in individuals using twitter: an observational study

Author:

Guntuku Sharath Chandra,Schneider Rachelle,Pelullo Arthur,Young Jami,Wong Vivien,Ungar Lyle,Polsky Daniel,Volpp Kevin G,Merchant Raina

Abstract

ObjectivesLoneliness is a major public health problem and an estimated 17% of adults aged 18–70 in the USA reported being lonely. We sought to characterise the (online) lives of people who mention the words ‘lonely’ or ‘alone’ in their Twitter timeline and correlate their posts with predictors of mental health.Setting and designFrom approximately 400 million tweets collected from Twitter in Pennsylvania, USA, between 2012 and 2016, we identified users whose Twitter posts contained the words ‘lonely’ or ‘alone’ and compared them to a control group matched by age, gender and period of posting. Using natural-language processing, we characterised the topics and diurnal patterns of users’ posts, their association with linguistic markers of mental health and if language can predict manifestations of loneliness. The statistical analysis, data synthesis and model creation were conducted in 2018–2019.Primary outcome measuresWe evaluated counts of language features in the users with posts including the words lonely or alone compared with the control group. These language features were measured by (a) open-vocabulary topics, (b) Linguistic Inquiry Word Count (LIWC) lexicon, (c) linguistic markers of anger, depression and anxiety, and (d) temporal patterns and number of drug words. Using machine learning, we also evaluated if expressions of loneliness can be predicted in users’ timelines, measured by area under curve (AUC).ResultsTwitter timelines of users (n=6202) with posts including the words lonely or alone were found to include themes about difficult interpersonal relationships, psychosomatic symptoms, substance use, wanting change, unhealthy eating and having troubles with sleep. Their posts were also associated with linguistic markers of anger, depression and anxiety. A random forest model predicted expressions of loneliness online with an AUC of 0.86.ConclusionsUsers’ Twitter timelines with the words lonely or alone often include psychosocial features and can potentially have associations with how individuals express and experience loneliness. This can inform low-resource online assessment for high-risk individuals experiencing loneliness and interventions focused on addressing morbidities in this condition.

Funder

Pennsylvania Department of Health

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3