Prehospital stratification in acute chest pain patient into high risk and low risk by emergency medical service: a prospective cohort study

Author:

Wibring KristofferORCID,Lingman Markus,Herlitz Johan,Amin Sinan,Bång Angela

Abstract

ObjectivesTo describe contemporary characteristics and diagnoses in prehospital patients with chest pain and to identify factors suitable for the early recognition of high-risk and low-risk conditions.DesignProspective observational cohort study.SettingTwo centre study in a Swedish county emergency medical services (EMS) organisation.ParticipantsUnselected inclusion of 2917 patients with chest pain contacting the EMS due to chest pain during 2018.Primary outcome measuresLow-risk or high-risk condition, that is, occurrence of time-sensitive diagnosis on hospital discharge.ResultsOf included EMS missions, 68% concerned patients with a low-risk condition without medical need of acute hospital treatment in hindsight. Sixteen per cent concerned patients with a high-risk condition in need of rapid transport to hospital care. Numerous variables with significant association with low-risk or high-risk conditions were found. In total high-risk and low-risk prediction models shared six predictive variables of which ST-depression on ECG and age were most important. Previously known risk factors such as history of acute coronary syndrome, diabetes and hypertension had no predictive value in the multivariate analyses. Some aspects of the symptoms such as pain intensity, pain in the right arm and paleness did on the other hand appear to be helpful. The area under the curve (AUC) for prediction of low-risk candidates was 0.786 and for high-risk candidates 0.796. The addition of troponin in a subset increased the AUC to >0.8 for both.ConclusionsA majority of patients with chest pain cared for by the EMS suffer from a low-risk condition and have no prognostic reason for acute hospital care given their diagnosis on hospital discharge. A smaller proportion has a high-risk condition and is in need of prompt specialist care. Building models with good accuracy for prehospital identification of these groups is possible. The use of risk stratification models could make a more personalised care possible with increased patient safety.

Funder

Department of Ambulance and Prehospital Care, Region Halland

Vetenskapsrådet

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3