Retrieving the deleterious mutations before extinction: genome-wide comparison of shared derived mutations in liver cancer and normal population

Author:

Chang Shuai,Li Jian,Li Qun,Yu Chun-peng,Xie Ling-ling,Wang SongORCID

Abstract

Study purposeDeleterious mutations would be rapidly purged from natural populations along with the extinction of their carriers. The currently observed mutations in existing species are mostly neutral. The inaccessibility of deleterious mutations impedes the functional studies on how these mutations affect the fitness at individual level.Study designThe connection between the deleterious genotype and the non-adaptive phenotype could be bridged by sequencing the genome before extinction. Although this approach is no longer feasible for evolutionary biologists, it is feasible for cancer biologists by profiling the mutations in tumour samples which are so deleterious that the carriers hardly live.ResultsBy comparing the derived mutation profile between normal populations and patients with liver cancer, we found that the shared mutations, which are highly deleterious, are suppressed to low allele frequencies in normal populations and tissues, but show remarkably high frequency in tumours. The density of shared mutations is negatively correlated with gene conservation and expression levels.ConclusionsDeleterious mutations are suppressed in functionally important genes as well as in normal populations. This work deepened our understanding on how natural selection act on deleterious mutations by analogising the cancer evolution to species evolution, which are essentially the same molecular process but at different time scales.

Publisher

BMJ

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3