Selection On synonymous Mutations Revealed by 1135 Genomes of Arabidopsis thaliana

Author:

Wei Lai1ORCID

Affiliation:

1. College of Life Sciences, Beijing Normal University, Beijing, China

Abstract

Synonymous mutations do not change the amino acid but do change the synonymous codon usage. In genomes of different organisms, the gene conversion process is biased toward GC, which is irrespective of mutation bias. In the coding region, this trend is especially obvious and it is possibly caused by the preference on G/C-ending codons over the A/T-ending ones. If the G/C-ending codons are advantageous, then the synonymous mutations that change A/T to G/C would be “optimal” compared to the opposite ones. In theory, one should observe signals of positive selection on these optimal synonymous mutations. The recently released single-nucleotide polymorphism (SNP) data from the 1001 genome project of Arabidopsis thaliana provided researchers with an unprecedented opportunity to verify this assumption. I fully take advantage of the SNP data from 1,135 A thaliana lines and came to the conclusion that synonymous mutations in natural populations are not strictly neutral: the synonymous mutations that increase GC content (from A/T to G/C) tend to have higher derived allele frequencies (DAFs) and, therefore, are likely to be positively selected. My current study broadens our knowledge of the selection patterns of synonymous mutations and should be appealing to evolutionary biologists. One sentence summary: In 1135 genomes of Arabidopsis thaliana, the synonymous mutations that increase the GC content tend to have higher derived allele frequencies (DAFs) and are likely to be positively selected.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Ecology, Evolution, Behavior and Systematics

Reference18 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3