Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies

Author:

Qi QibinORCID,Li JunORCID,Yu Bing,Moon Jee-Young,Chai Jin C,Merino JordiORCID,Hu Jie,Ruiz-Canela Miguel,Rebholz Casey,Wang ZhengORCID,Usyk Mykhaylo,Chen Guo-Chong,Porneala Bianca C,Wang Wenshuang,Nguyen Ngoc Quynh,Feofanova Elena V,Grove Megan L,Wang Thomas J,Gerszten Robert E,Dupuis Josée,Salas-Salvadó Jordi,Bao Wei,Perkins David L,Daviglus Martha L,Thyagarajan Bharat,Cai Jianwen,Wang Tao,Manson JoAnn E,Martínez-González Miguel A,Selvin Elizabeth,Rexrode Kathryn M,Clish Clary B,Hu Frank B,Meigs James B,Knight Rob,Burk Robert D,Boerwinkle Eric,Kaplan Robert C

Abstract

ObjectiveTryptophan can be catabolised to various metabolites through host kynurenine and microbial indole pathways. We aimed to examine relationships of host and microbial tryptophan metabolites with incident type 2 diabetes (T2D), host genetics, diet and gut microbiota.MethodWe analysed associations between circulating levels of 11 tryptophan metabolites and incident T2D in 9180 participants of diverse racial/ethnic backgrounds from five cohorts. We examined host genome-wide variants, dietary intake and gut microbiome associated with these metabolites.ResultsTryptophan, four kynurenine-pathway metabolites (kynurenine, kynurenate, xanthurenate and quinolinate) and indolelactate were positively associated with T2D risk, while indolepropionate was inversely associated with T2D risk. We identified multiple host genetic variants, dietary factors, gut bacteria and their potential interplay associated with these T2D-relaetd metabolites. Intakes of fibre-rich foods, but not protein/tryptophan-rich foods, were the dietary factors most strongly associated with tryptophan metabolites. The fibre-indolepropionate association was partially explained by indolepropionate-associated gut bacteria, mostly fibre-using Firmicutes. We identified a novel association between a host functional LCT variant (determining lactase persistence) and serum indolepropionate, which might be related to a host gene-diet interaction on gut Bifidobacterium, a probiotic bacterium significantly associated with indolepropionate independent of other fibre-related bacteria. Higher milk intake was associated with higher levels of gut Bifidobacterium and serum indolepropionate only among genetically lactase non-persistent individuals.ConclusionHigher milk intake among lactase non-persistent individuals, and higher fibre intake were associated with a favourable profile of circulating tryptophan metabolites for T2D, potentially through the host–microbial cross-talk shifting tryptophan metabolism toward gut microbial indolepropionate production.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

BMJ

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3