Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers

Author:

Calderaro JulienORCID,Kather Jakob NikolasORCID

Abstract

Artificial intelligence (AI) can extract complex information from visual data. Histopathology images of gastrointestinal (GI) and liver cancer contain a very high amount of information which human observers can only partially make sense of. Complementing human observers, AI allows an in-depth analysis of digitised histological slides of GI and liver cancer and offers a wide range of clinically relevant applications. First, AI can automatically detect tumour tissue, easing the exponentially increasing workload on pathologists. In addition, and possibly exceeding pathologist’s capacities, AI can capture prognostically relevant tissue features and thus predict clinical outcome across GI and liver cancer types. Finally, AI has demonstrated its capacity to infer molecular and genetic alterations of cancer tissues from histological digital slides. These are likely only the first of many AI applications that will have important clinical implications. Thus, pathologists and clinicians alike should be aware of the principles of AI-based pathology and its ability to solve clinically relevant problems, along with its limitations and biases.

Funder

Fondation Bristol Myers Squibb pour la Recherche en Immuno-Oncologie

Fondation de l'Avenir

Publisher

BMJ

Subject

Gastroenterology

Reference86 articles.

1. Goldblum JR , Lamps LW , McKenney JK , et al . Rosai and Ackerman’s Surgical Pathology E-Book. Elsevier Health Sciences, 2017.

2. Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association;Abels;J Pathol,2019

3. A practical guide to whole slide imaging: a white paper from the digital pathology association;Zarella;Arch Pathol Lab Med,2019

4. Whole slide imaging for teleconsultation and clinical use;Dangott;J Pathol Inform,2010

5. Evans AJ , Depeiza N , Allen S-G , et al . Use of whole slide imaging (WSI) for distance teaching. J Clin Pathol.

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3