A deep-learning-based model for assessment of autoimmune hepatitis from histology: AI(H)

Author:

Ercan CanerORCID,Kordy Kattayoun,Knuuttila Anna,Zhou Xiaofei,Kumar Darshan,Koponen Ville,Mesenbrink Peter,Eppenberger-Castori Serenella,Amini Parisa,Pedrosa Marcos C.,Terracciano Luigi M.

Abstract

AbstractHistological assessment of autoimmune hepatitis (AIH) is challenging. As one of the possible results of these challenges, nonclassical features such as bile-duct injury stays understudied in AIH. We aim to develop a deep learning tool (artificial intelligence for autoimmune hepatitis [AI(H)]) that analyzes the liver biopsies and provides reproducible, quantifiable, and interpretable results directly from routine pathology slides. A total of 123 pre-treatment liver biopsies, whole-slide images with confirmed AIH diagnosis from the archives of the Institute of Pathology at University Hospital Basel, were used to train several convolutional neural network models in the Aiforia artificial intelligence (AI) platform. The performance of AI models was evaluated on independent test set slides against pathologist’s manual annotations. The AI models were 99.4%, 88.0%, 83.9%, 81.7%, and 79.2% accurate (ratios of correct predictions) for tissue detection, liver microanatomy, necroinflammation features, bile duct damage detection, and portal inflammation detection, respectively, on hematoxylin and eosin-stained slides. Additionally, the immune cells model could detect and classify different immune cells (lymphocyte, plasma cell, macrophage, eosinophil, and neutrophil) with 72.4% accuracy. On Sirius red-stained slides, the test accuracies were 99.4%, 94.0%, and 87.6% for tissue detection, liver microanatomy, and fibrosis detection, respectively. Additionally, AI(H) showed bile duct injury in 81 AIH cases (68.6%). The AI models were found to be accurate and efficient in predicting various morphological components of AIH biopsies. The computational analysis of biopsy slides provides detailed spatial and density data of immune cells in AIH landscape, which is difficult by manual counting. AI(H) can aid in improving the reproducibility of AIH biopsy assessment and bring new descriptive and quantitative aspects to AIH histology.

Funder

Novartis Institutes for BioMedical Research

University of Basel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3