Identification of rare coding variants in TYK2 protective for rheumatoid arthritis in the Japanese population and their effects on cytokine signalling

Author:

Motegi Tomoki,Kochi Yuta,Matsuda Koichi,Kubo Michiaki,Yamamoto KazuhikoORCID,Momozawa YukihideORCID

Abstract

ObjectiveAlthough genome-wide association studies (GWAS) have identified approximately 100 loci for rheumatoid arthritis (RA), the disease mechanisms are not completely understood. We evaluated the pathogenesis of RA by focusing on rare coding variants.MethodsThe coding regions of 98 candidate genes identified by GWAS were sequenced in 2294 patients with RA and 4461 controls in Japan. An association analysis was performed using cases and controls for variants, genes and domains of TYK2. Cytokine responses for two associated variants (R231W, rs201917359; and R703W, rs55882956) in TYK2 as well as a previously reported risk variant (P1004A, rs34536443) for multiple autoimmune diseases were evaluated by reporter assays.ResultsA variant in TYK2 (R703W) showed a suggestive association (p=5.47×10−8, OR=0.48). We observed more accumulation of rare coding variants in controls in TYK2 (p=3.94×10−12, OR=0.56). The four-point-one, ezrin, radixin, moesin (FERM; 2.14×10−3, OR=0.66) and pseudokinase domains (1.63×10−8, OR=0.52) of TYK2 also showed enrichment of variants in controls. R231W in FERM domain especially reduced interleukin (IL)-6 and interferon (IFN)-γ signalling, whereas P1104A in kinase domain reduced IL-12, IL-23 and IFN-α signalling. R703W in pseudokinase domain reduced cytokine signals similarly to P1104A, but the effects were weaker than those of P1104A.ConclusionsThe FERM and pseudokinase domains in TYK2 were associated with the risk of RA in the Japanese population. Variants in TYK2 had different effects on cytokine signalling, suggesting that the regulation of selective cytokine signalling is a target for RA treatment.

Funder

Japan Agency for Medical Research and Development

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3