Abstract
BackgroundCryoballoon ablation, especially Arctic Front Advance Pro (AFA-Pro) (Medtronic, Minneapolis, Minnesota, USA), has been widely recognised as a standard approach to atrial fibrillation (AF). Recently, Boston Scientific has released a novel cryoballoon system (POLARx). Despite comparable acute clinical outcomes of these two cryoballoons, the recent study reported a higher complication rate, especially for phrenic nerve palsy, with POLARx. However, their impact on biological tissue remains unclear.ObjectiveThe purpose of our study is to evaluate temperature change of biological tissue during cryoablation of each cryoballoon using a porcine experimental model.MethodA tissue-based pulmonary vein model was constructed from porcine myocardial tissue and placed on a stage designed to simulate pulmonary vein anatomy and venous flow. Controlled cryoablations of AFA-Pro and POLARx were performed in this model to evaluate the tissue temperature. A temperature sensor was set behind the muscle and cryoballoon ablation was performed after confirming the occlusion of pulmonary vein with cryoballoon.ResultsThe mean tissue nadir temperature during cryoablation with AFA-Pro was −41.5°C±4.9°C, while the mean tissue nadir temperature during cryoablation with POLARx was −58.4°C±5.9°C (p<0.001). The mean balloon nadir temperature during cryoablation with AFA-Pro was −54.6°C±2.6°C and the mean balloon nadir temperature during cryoablation with POLARx was −64.7°C±3.8°C (p<0.001).ConclusionPOLARx could freeze the biological tissue more strongly than AFA-Pro.
Subject
Cardiology and Cardiovascular Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献