Abstract
Abstract
Introduction
Cryoballoon (CB) ablation has become a popular method for pulmonary vein isolation (PVI) in atrial fibrillation (AF) treatment. This study aimed to compare the intraprocedural ablation characteristics of two cryoballoons, Arctic Front Advance Pro™ (AFA-Pro, Medtronic) and POLARx™ (Boston Scientific).
Methods and results
In this retrospective single-center study, 230 symptomatic paroxysmal or persistent AF patients underwent CB ablation with either AFA-Pro or POLARx. Propensity-score matching resulted in two cohorts of 114 patients each. Baseline and procedural characteristics were comparable between both CBs. POLARx achieved lower minimal temperatures (e.g., left superior pulmonary vein, LSPV: AFA-Pro − 49.0 °C vs. POLARx − 59.5 °C) and lower temperatures at time-to-isolation (TTI). Additionally, POLARx reached lower temperatures faster, as evidenced by lower temperatures after 40 and 60 s, and a larger mean temperature change between 20 and 40 s. POLARx also had a greater area under the curve below 0 °C and a longer thawing phase. Both CBs achieved comparable high rates of final PV-isolation.
TTI, minimal esophagus temperature, and first-pass isolation rates were similar between groups. Periprocedural complications, including phrenic nerve injuries, were comparable. Troponin levels in the left atrium were elevated with both systems. Values and change in troponin were numerically higher in the POLARx group (delta troponin: AFA-Pro 36.3 (26.4, 125.4) ng/L vs. POLARx 104.9 (49.5, 122.2) ng/L), p = 0.077).
Conclusion
AFA-Pro and POLARx are both highly effective and safe CB systems for PVI. POLARx exhibited significant faster and lower freezing characteristics, and numerically higher troponin levels might indicate greater myocardial injury. However, these differences did not translate into improved performance, procedural efficiency, or safety.
Graphical abstract
Funder
Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn
Universitätsklinikum Bonn
Publisher
Springer Science and Business Media LLC