Territory-wide cohort study of Brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation

Author:

Lee Sharen,Zhou Jiandong,Li Ka Hou Christien,Leung Keith Sai Kit,Lakhani Ishan,Liu Tong,Wong Ian Chi Kei,Mok Ngai Shing,Mak Chloe,Jeevaratnam Kamalan,Zhang Qingpeng,Tse GaryORCID

Abstract

ObjectivesBrugada syndrome (BrS) is an ion channelopathy that predisposes affected patients to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death. The aim of this study is to examine the predictive factors of spontaneous VT/VF.MethodsThis was a territory-wide retrospective cohort study of patients diagnosed with BrS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Cox regression was used to identify significant risk predictors. Non-linear interactions between variables (latent patterns) were extracted using non-negative matrix factorisation (NMF) and used as inputs into the random survival forest (RSF) model.ResultsThis study included 516 consecutive BrS patients (mean age of initial presentation=50±16 years, male=92%) with a median follow-up of 86 (IQR: 45–118) months. The cohort was divided into subgroups based on initial disease manifestation: asymptomatic (n=314), syncope (n=159) or VT/VF (n=41). Annualised event rates per person-year were 1.70%, 0.05% and 0.01% for the VT/VF, syncope and asymptomatic subgroups, respectively. Multivariate Cox regression analysis revealed initial presentation of VT/VF (HR=24.0, 95% CI=1.21 to 479, p=0.037) and SD of P-wave duration (HR=1.07, 95% CI=1.00 to 1.13, p=0.044) were significant predictors. The NMF-RSF showed the best predictive performance compared with RSF and Cox regression models (precision: 0.87 vs 0.83 vs. 0.76, recall: 0.89 vs. 0.85 vs 0.73, F1-score: 0.88 vs 0.84 vs 0.74).ConclusionsClinical history, electrocardiographic markers and investigation results provide important information for risk stratification. Machine learning techniques using NMF and RSF significantly improves overall risk stratification performance.

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3