Application of artificial intelligence in the diagnosis and treatment of cardiac arrhythmia

Author:

Guo Rong‐Xin1,Tian Xu1,Bazoukis George23ORCID,Tse Gary145,Hong Shenda67,Chen Kang‐Yin1,Liu Tong1

Affiliation:

1. Tianjin Key Laboratory of lonic‐Molecular Function of Cardiovascular Disease Department of Cardiology Tianjin Institute of Cardiology Second Hospital of Tianjin Medical University Tianjin China

2. Department of Cardiology Larnaca General Hospital, Inomenon Polition Amerikis Larnaca Cyprus

3. Department of Basic and Clinical Sciences University of Nicosia Medical School Nicosia Cyprus

4. Cardiovascular Analytics Group PowerHealth Research Institute Hong Kong China

5. School of Nursing and Health Studies Hong Kong Metropolitan University Hong Kong China

6. National Institute of Health Data Science Peking University Beijing China

7. Institute of Medical Technology Peking University Health Science Center Beijing China

Abstract

AbstractThe rapid growth in computational power, sensor technology, and wearable devices has provided a solid foundation for all aspects of cardiac arrhythmia care. Artificial intelligence (AI) has been instrumental in bringing about significant changes in the prevention, risk assessment, diagnosis, and treatment of arrhythmia. This review examines the current state of AI in the diagnosis and treatment of atrial fibrillation, supraventricular arrhythmia, ventricular arrhythmia, hereditary channelopathies, and cardiac pacing. Furthermore, ChatGPT, which has gained attention recently, is addressed in this paper along with its potential applications in the field of arrhythmia. Additionally, the accuracy of arrhythmia diagnosis can be improved by identifying electrode misplacement or erroneous swapping of electrode position using AI. Remote monitoring has expanded greatly due to the emergence of contactless monitoring technology as wearable devices continue to develop and flourish. Parallel advances in AI computing power, ChatGPT, availability of large data sets, and more have greatly expanded applications in arrhythmia diagnosis, risk assessment, and treatment. More precise algorithms based on big data, personalized risk assessment, telemedicine and mobile health, smart hardware and wearables, and the exploration of rare or complex types of arrhythmia are the future direction.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3