Data Analytics: COVID-19 Prediction Using Multimodal Data

Author:

Mahalle Parikshit N.,Sable Nilesh P.,Mahalle Namita P.,Shinde Gitanjali R.

Abstract

Globally, there is massive uptake and explosion of data and challenge is to address issues like scale, pace, velocity, variety, volume and complexity of this big data. Considering the recent epidemic in China, modeling of COVID-19 epidemic for cumulative number of infected cases using data available in early phase was big challenge. Being COVID-19 pandemic during very short time span, it is very important to analyze the trend of these spread and infected cases. This chapter presents medical perspective of COVID-19 towards epidemiological triad and the study of state-of-the-art. The main aim this chapter is to present different predictive analytics techniques available for trend analysis, different models and algorithms and their comparison. Finally, this chapter concludes with the prediction of COVID-19 using Prophet algorithm indicating more faster spread in short term. These predictions will be useful to government and healthcare communities to initiate appropriate measures to control this outbreak in time.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytics of Epidemiological Data using Machine Learning Models;International Journal of Next-Generation Computing;2023-02-15

2. The prediction analysis of Covid-19 using enhanced deep learning network and improvised optimization algorithms;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ENGINEERING RESEARCH AND APPLICATION 2022 (ICERA 2022);2023

3. Omicron Case Prediction using Machine Learning;2022 Second International Conference on Next Generation Intelligent Systems (ICNGIS);2022-07-29

4. Artificial Intelligence–Aided Precision Medicine for COVID-19: Strategic Areas of Research and Development;Journal of Medical Internet Research;2021-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3