Author:
Mahalle Parikshit N.,Sable Nilesh P.,Mahalle Namita P.,Shinde Gitanjali R.
Abstract
Globally, there is massive uptake and explosion of data and challenge is to address issues like scale, pace, velocity, variety, volume and complexity of this big data. Considering the recent epidemic in China, modeling of COVID-19 epidemic for cumulative number of infected cases using data available in early phase was big challenge. Being COVID-19 pandemic during very short time span, it is very important to analyze the trend of these spread and infected cases. This chapter presents medical perspective of COVID-19 towards epidemiological triad and the study of state-of-the-art. The main aim this chapter is to present different predictive analytics techniques available for trend analysis, different models and algorithms and their comparison. Finally, this chapter concludes with the prediction of COVID-19 using Prophet algorithm indicating more faster spread in short term. These predictions will be useful to government and healthcare communities to initiate appropriate measures to control this outbreak in time.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献