Analytics of Epidemiological Data using Machine Learning Models

Author:

Barapatre Harshita,Jangir Jatin,Bajpai Sudhanshu,Chawla Bhavesh,Keswani Gunjan

Abstract

Epidemiological data is the data obtained based on disease, injury or environmental hazard occurrence using the previous data on the epidemic situation. We can use it for analysis and find the trends and patterns. We can use different machine learning models to create a platform that can be used for different time series data. We can rely on the properties of time series data like trends and seasonality and use this for future prediction. Acquiring the dataset is the first step in data preprocessing in machine learning. We have collected the dataset from ourWorldIndia website which is a real-life dataset of covid-19. This paper presents the idea of a dedicated machine learning model to forecast the future using epidemiological data. We have taken a data-set of covid-19 for the prediction of the number of daily cases infected by the coronavirus. Our machine learning model can be applied on the dataset of any country in the world. We have applied it on the dataset of India in the experimentation. Our goal behind this research paper is to give the ML model which can be easily used on any epidemiological data for prediction by analysing the seasonality.

Publisher

Perpetual Innovation Media Pvt. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3