Abstract
In this work, polyacrylic acid-functionalized MCM-41 was synthesized, which was further interacted with calcium ions, to realize enhanced pH-responsive nanocarrier for sustained drug release. First, mesoporous silica nanoparticles (MSNs) were prepared by the sol-gel method. Afterward, (3-trimethoxysilyl)propyl methacrylate (TMSPM) modified surface was prepared by using the post-grafting method, then polymerization of acrylic acid was proceeded. After adding calcium chloride solution, polyacrylic acid-functionalized MSNs with calcium-carboxyl ionic bonds in the polymeric layer, which can prevent the cargo from leaking out of the mesopore, were prepared. The structure and morphology of the modified nanoparticles (PAA-MSNs) were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, etc. The controlled release of guest molecules was studied by using 5-fluorouracil (5-FU). The drug molecules-incorporated nanoparticles showed different releasing rates under different pH conditions. It is considered that our current materials have the potential as pH-responsive targeted nanocarriers in the field of medical treatment.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献