Abstract
The transport sector in Germany causes one-quarter of energy-related greenhouse gas emissions. One potential solution to reduce these emissions is the use of battery electric vehicles. Although a number of life cycle assessments have been conducted for these vehicles, the influence of a transport system wide transition has not been researched sufficiently. Therefore, we developed a method which combines life cycle assessment with an agent-based transport simulation and synthetic electric, diesel and gasoline powered vehicle models. We use the transport simulation to obtain the number of vehicles, their lifetime mileage and road-specific consumption. Subsequently we analyze the product systems’ vehicle production, use phase and End-of-Life. The results are scaled depending on the covered distance, the vehicle weight and the consumption for the whole life cycle. The results indicate that the sole transition of drive trains is insufficient to significantly lower the greenhouse gas emissions. However, sensitivity analyses demonstrate that there is a considerable potential to reduce greenhouse gas emissions with higher shares of renewable energies, a different vehicle distribution and a higher lifetime mileage. The method facilitates the assessment of the ecological impacts of the complete car based transportation in urban agglomerations and is able to analyze different transport sectors.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献