Driving Sustainability: Carbon Footprint, 3D Printing, and Legislation concerning Electric and Autonomous Vehicles

Author:

Jovanović Mihailo1,Mateo Sanguino Tomás de J.2ORCID,Damjanović Milanko3,Đukanović Milena4ORCID,Thomopoulos Nikolas5

Affiliation:

1. Faculty of Management Herceg Novi, University Adriatik, Zemunska 143, 85348 Meljine, Montenegro

2. Escuela Técnica Superior de Ingeniería, Universidad de Huelva, Av. de las Artes, s/n, 21007 Huelva, Spain

3. Faculty of Mechanical Engineering, University of Montenegro, Dzordza Vasingtona bb, 81000 Podgorica, Montenegro

4. Faculty of Electrical Engineering, University of Montenegro, Dzordza Vasingtona bb, 81000 Podgorica, Montenegro

5. Department of Tourism and Transport, School of Hospitality and Tourism Management, University of Surrey, Guildford GU2 7XH, UK

Abstract

In recent years, there has been a remarkable development in the technology and legislation related to electric and autonomous vehicles (i.e., EVs/AVs). This technological advancement requires the deployment of the most up-to-date supporting infrastructure to achieve safe operation. Further infrastructure is needed for Level 5 vehicles, namely the introduction of super-fast wireless 5G technology. To achieve harmony between the rapid technological advancement of EVs/AVs and environmental preservation, enacting legislation related to their sustainable use is vital. Thus, this manuscript provides a review of the technological development of EVs/AVs, with a special focus on carbon footprints and the implementation of additive manufacturing using recycled materials. While EVs have a 12.13% increased carbon footprint compared to conventional vehicles, AVs with basic and advanced intelligence features have an increased carbon footprint of 41.43% and 99.65%, respectively. This article emphasizes that the integration of 3D-printed components has the potential to offset this impact with a substantial 60% reduction. As a result, custom-made solutions involving 3D printing are explored, leading to greater speed, customization, and cost-effectiveness for EVs/AVs. This article also lists the advantages and disadvantages of the existing legislation in Spain, the United Kingdom, and the western Balkans, demonstrating various approaches to promoting electric mobility and the development of autonomous vehicles. In Spain, initiatives like the MOVES program incentivize EV adoption, while the UK focuses on expanding the EV market and addressing concerns about EVs’ quiet operation. In the western Balkans, the adoption of legislation lags behind, with limited incentives and infrastructure for EVs. To boost sales, legal mechanisms are necessary to reduce costs and improve accessibility, in addition to offering subsidies for the purchase of EVs. To this end, an analysis of the incentive measures proposed for the development and use of renewable power sources for the supply of energy for EVs/AVs is presented.

Funder

WISE-ACT (Wider Impacts and Scenario Evaluation of Autonomous & Connected Transport) COST Action CA16222

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3