Improving Soil Stability with Alum Sludge: An AI-Enabled Approach for Accurate Prediction of California Bearing Ratio

Author:

Baghbani AbolfazlORCID,Nguyen Minh Duc,Alnedawi Ali,Milne Nick,Baumgartl ThomasORCID,Abuel-Naga Hossam

Abstract

Alum sludge is a byproduct of water treatment plants and its use as a soil stabilizer has gained increasing attention due to its economic and environmental benefits. Its application has been shown to improve the strength and stability of soil, making it suitable for various engineering applications. However, to go beyond just measuring the effects of alum sludge as a soil stabilizer, this paper explores the use of artificial intelligence (AI) methods to predict the California bearing ratio (CBR) of soils stabilized with alum sludge. Three AI methods, including two black box methods (artificial neural network and support vector machines) and one grey box method (genetic programming), were used to predict CBR based on a database with nine input parameters. The results showed that all three AI models were able to predict CBR with good accuracy, with coefficient of determination (R2) values ranging from 0.94 to 0.99 and mean absolute error (MAE) values ranging from 0.30 to 0.51. In a novel approach, the genetic programming method was used to produce an equation to estimate CBR, which included seven inputs and accurately predicted CBR. The analysis of sensitivity and importance of parameters showed that the number of hammer blows for compaction was the most important parameter, while the parameters for maximum dry density of soil and mixture were the least important. This study suggests that AI methods can effectively predict the performance of alum sludge as a soil stabilizer, and the proposed equation using genetic programming can be a useful tool for predicting CBR.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3