Accurately Predicting Quartz Sand Thermal Conductivity Using Machine Learning and Grey-Box AI Models

Author:

Baghbani Abolfazl1ORCID,Abuel-Naga Hossam2,Shirkavand Danial3

Affiliation:

1. School of Engineering, Deakin University, Melbourne, VIC 3125, Australia

2. Department of Civil Engineering, La Trobe University, Melbourne, VIC 3086, Australia

3. Department of Civil Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran

Abstract

The thermal conductivity of materials is a crucial property with diverse applications, particularly in engineering. Understanding soil thermal conductivity is crucial for designing efficient geothermal systems, predicting soil temperatures, and assessing soil contamination. This paper aimed to predict quartz sand thermal conductivity by using four mathematical models: multiple linear regression (MLR), artificial neural network (ANN), classification and regression random forest (CRRF), and genetic programming (GP). A grey-box AI method, GP, was used for the first time in this topic. Seven inputs affecting thermal conductivity were evaluated in the study, including sand porosity, degree of saturation, coefficient of uniformity, coefficient of curvature, mean particle size, and minimum and maximum void ratios. In predicting thermal conductivity, the MLR model performed poorly, with a coefficient of determination R2 = 0.737 and a mean absolute error MAE = 0.300. Both ANN models using the Levenberg–Marquardt algorithm and the Bayesian Regularization (BR) algorithm outperformed the MLR model with an accuracy of R2 = 0.916 and an error of MAE = 0.151. In addition, the CRRF model had the best accuracy of R2 = 0.993 and MAE = 0.045. In addition, GP showed acceptable performance in predicting sand thermal conductivity. The R2 and MAE values of GP were 0.986 and 0.063, respectively. This paper presents the best GP equation for evaluating other databases. Additionally, the porosity and saturation of the sand were found to have the greatest impact on the model results, while coefficients of curvature and uniformity had the least influence. Overall, the results of this study demonstrate that grey-box artificial intelligence models can be used to accurately predict quartz sand thermal conductivity.

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3