Electricity Price Forecasting Using Recurrent Neural Networks

Author:

Ugurlu UmutORCID,Oksuz IlkayORCID,Tas Oktay

Abstract

Accurate electricity price forecasting has become a substantial requirement since the liberalization of the electricity markets. Due to the challenging nature of the electricity prices, which includes high volatility, sharp price spikes and seasonality, various types of electricity price forecasting models still compete and can not outperform each other consistently. Neural Networks have been successfully used in machine learning problems and Recurrent Neural Networks (RNNs) have been proposed to address time-dependent learning problems. In particular, Long Short Term Memory and Gated Recurrent Units (GRU) are tailor-made for time series price estimation. In this paper, we propose to use Gated Recurrent Units as a new technique for electricity price forecasting. We have trained a variety of algorithms with rolling 3-year window and compared the results with the RNNs. In our experiments, 3-layered GRUs outperformed all other neural network structures and state of the art statistical techniques in a statistically significant manner in the Turkish day-ahead market.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3