Forecasting Day-Ahead Electricity Prices for the Italian Electricity Market Using a New Decomposition—Combination Technique

Author:

Iftikhar Hasnain12ORCID,Turpo-Chaparro Josue E.3ORCID,Canas Rodrigues Paulo4ORCID,López-Gonzales Javier Linkolk5ORCID

Affiliation:

1. Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. Department of Mathematics, City University of Science and Information Technology Peshawar, Peshawar 25000, Pakistan

3. Escuela de Posgrado, Universidad Peruana Unión, Lima 15468, Peru

4. Department of Statistics, Federal University of Bahia, Salvador 40170-110, Brazil

5. Vicerrectorado de Investigación, Universidad Privada Norbert Wiener, Lima 15046, Peru

Abstract

Over the last 30 years, day-ahead electricity price forecasts have been critical to public and private decision-making. This importance has increased since the global wave of deregulation and liberalization in the energy sector at the end of the 1990s. Given these facts, this work presents a new decomposition–combination technique that employs several nonparametric regression methods and various time-series models to enhance the accuracy and efficiency of day-ahead electricity price forecasting. For this purpose, first, the time-series of the original electricity prices deals with the treatment of extreme values. Second, the filtered series of the electricity prices is decomposed into three new subseries, namely the long-term trend, a seasonal series, and a residual series, using two new proposed decomposition methods. Third, we forecast each subseries using different univariate and multivariate time-series models and all possible combinations. Finally, the individual forecasting models are combined directly to obtain the final one-day-ahead price forecast. The proposed decomposition–combination forecasting technique is applied to hourly spot electricity prices from the Italian electricity-market data from 1 January 2014 to 31 December 2019. Hence, four different accuracy mean errors—mean absolute error, mean squared absolute percent error, root mean squared error, and mean absolute percent error; a statistical test, the Diebold–Marino test; and graphical analysis—are determined to check the performance of the proposed decomposition–combination forecasting method. The experimental findings (mean errors, statistical test, and graphical analysis) show that the proposed forecasting method is effective and accurate in day-ahead electricity price forecasting. Additionally, our forecasting outcomes are comparable to those described in the literature and are regarded as standard benchmark models. Finally, the authors recommended that the proposed decomposition–combination forecasting technique in this research work be applied to other complicated energy market forecasting challenges.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3