The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting

Author:

Sulandari WinitaORCID,Yudhanto YudhoORCID,Rodrigues Paulo CanasORCID

Abstract

In general, studies on short-term hourly electricity load modeling and forecasting do not investigate in detail the sources of uncertainty in forecasting. This study aims to evaluate the impact and benefits of applying bootstrap aggregation in overcoming the uncertainty in time series forecasting, thereby increasing the accuracy of multistep ahead point forecasts. We implemented the existing and proposed clustering-based bootstrapping methods to generate new electricity load time series. In the proposed method, we use singular spectrum analysis to decompose the series between signal and noise to reduce the variance of the bootstrapped series. The noise is then bootstrapped by K-means clustering-based generation of Gaussian normal distribution (KM.N) before adding it back to the signal, resulting in the bootstrapped series. We apply the benchmark models for electricity load forecasting, SARIMA, NNAR, TBATS, and DSHW, to model all new bootstrapped series and determine the multistep ahead point forecasts. The forecast values obtained from the original series are compared with the mean and median across all forecasts calculated from the bootstrapped series using the Malaysian, Polish, and Indonesian hourly load series for 12, 24, and 36 steps ahead. We conclude that, in this case, the proposed bootstrapping method improves the accuracy of multistep-ahead forecast values, especially when considering the SARIMA and NNAR models.

Funder

Ministry of Education, Culture, Research, and Technology Indonesia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3