Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissues and organs integrity. Initially thought to be a by-stander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM is constantly undergoing degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, the ECM synthesis, remodeling, and degradation is dysregulated causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in various disease progression such as cancers. Advances in ‘omics’ technologies have seen an increase in studies focussing on bi-directional cell-matrix interactions and here we highlight emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted-therapies that can modify tumor ECM to overcome drug resistance and better cancer treatment.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献