Machine Learning Approaches for Accurate Prediction of Relative Humidity based on Temperature and Wet-Bulb Depression

Author:

Ghadiri Mahdi,Marjani Azam,Mohammadinia Samira,Shokri Manouchehr

Abstract

The main parameters for calculation of relative humidity are the wet-bulb depression and dry bulb temperature. In this work, easy-to-used predictive tools based on statistical learning concepts, i.e., the Adaptive Network-Based Fuzzy Inference System (ANFIS) and Least Square Support Vector Machine (LSSVM) are developed for calculating relative humidity in terms of wet bulb depression and dry bulb temperature. To evaluate the aforementioned models, some statistical analyses have been done between the actual and estimated data points. Results obtained from the present models showed their capabilities to calculate relative humidity for divers values of dry bulb temperatures and also wet-bulb depression. The obtained values of MSE and MRE were 0.132 and 0.931, 0.193 and 1.291 for the LSSVM and ANFIS approaches respectively. These developed tools are user-friend and can be of massive value for scientists especially, those dealing with air conditioning and wet cooling towers systems to have a noble check of the relative humidity in terms of wet bulb depression and dry bulb temperatures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3