Author:
Adnan Muhammad,Muhammad Adnan Rana,Liu Shiyin,Saifullah Muhammad,Latif Yasir,Iqbal Mudassar
Abstract
Accurate and reliable prediction of relative humidity is of great importance in all fields concerning global climate change. The current study has employed Multivariate Adaptive Regression Spline (MARS) and M5 Tree (M5T) models to predict the relative humidity in the Hunza River basin, Pakistan. Both the models provided the best prediction for the input scenario S6 (RHt-1, RHt-2, RHt-3, Tt-1, Tt-2, Tt-3). The statistical analysis displayed that the MARS model provided a better prediction of relative humidity as compared to M5T at all meteorological stations, especially, at Ziarat followed by Khunjerab and Naltar. The values of root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) were (5.98%, 5.43%, and 0.808) for Khunjerab; (6.58%, 5.08%, and 0.806) for Naltar; and (5.86%, 4.97%, 0.815) for Ziarat during the testing of MARS model whereas, the values were (6.14%, 5.56%, and 0.772) for Khunjerab; (6.19%, 5.58% and 0.762) for Naltar and (6.08%, 5.46%, 0.783) for Ziarat during the testing of M5T model. Both the models performed slightly better in training as compared to the testing stage. The current study encourages future research to be conducted at high altitude basins for the prediction of other meteorological variables using machine learning tools.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献