Prediction of Relative Humidity in a High Elevated Basin of Western Karakoram by Using Different Machine Learning Models

Author:

Adnan Muhammad,Muhammad Adnan Rana,Liu Shiyin,Saifullah Muhammad,Latif Yasir,Iqbal Mudassar

Abstract

Accurate and reliable prediction of relative humidity is of great importance in all fields concerning global climate change. The current study has employed Multivariate Adaptive Regression Spline (MARS) and M5 Tree (M5T) models to predict the relative humidity in the Hunza River basin, Pakistan. Both the models provided the best prediction for the input scenario S6 (RHt-1, RHt-2, RHt-3, Tt-1, Tt-2, Tt-3). The statistical analysis displayed that the MARS model provided a better prediction of relative humidity as compared to M5T at all meteorological stations, especially, at Ziarat followed by Khunjerab and Naltar. The values of root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) were (5.98%, 5.43%, and 0.808) for Khunjerab; (6.58%, 5.08%, and 0.806) for Naltar; and (5.86%, 4.97%, 0.815) for Ziarat during the testing of MARS model whereas, the values were (6.14%, 5.56%, and 0.772) for Khunjerab; (6.19%, 5.58% and 0.762) for Naltar and (6.08%, 5.46%, 0.783) for Ziarat during the testing of M5T model. Both the models performed slightly better in training as compared to the testing stage. The current study encourages future research to be conducted at high altitude basins for the prediction of other meteorological variables using machine learning tools.

Publisher

IntechOpen

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3