Abstract
This paper deals with analyzing the structural responses of glass-fiber-reinforced polymer (GFRP) tubes filled with recycled and concrete material for developing composite piles, as an alternative to traditional steel reinforced piles in bridge foundations. The Full-scale GFRP composite piles included three inner and outer layers, using a fiber-oriented material that was inclined longitudinally, almost 40 degrees from the horizontal axis of the pile. The segment between these two layers was inclined 80 degrees from the longitudinal axis of the tube. The behavior of the filled GFRP tubes was semi-linear, and resulted in increasing the total ductility and strength of the piles. Adjusting the material’s properties, such as the EAxial, EHoop, and Poisson ratios optimized the results. The lateral strength of the GFRP composite pile and pre-stressed piles are comparable in both axial and lateral loading conditions.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献