Study on the Basic Performance Deterioration Law and the Application of Lead Rubber Bearings under the Alternation of Aging and Seawater Erosion

Author:

Li Yanmin123,Ma Yuhong123,Zhao Guifeng24,Liu Rong1

Affiliation:

1. Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou 510006, China

2. Guangdong Key Laboratory of Earthquake Engineering & Applied Technique, Guangzhou 510006, China

3. Key Laboratory of Earthquake Resistance, Earthquake Mitigation and Structural Safety, Ministry of Education, Guangzhou 510006, China

4. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

Lead rubber isolation bearings are well-recognized as a common and effective means to mitigate the seismic responses of bridges. However, rubber isolation bearings used in offshore bridges are extremely vulnerable to the action of the alternation of aging and seawater erosion caused by weather conditions, wind, waves, and other factors. Meanwhile, the deterioration law and application of lead rubber bearings subject to the effect of aging and seawater erosion cycles are not clear. Thus, aging and seawater erosion cycles testing on both lead rubber isolation bearings (LRB) and rubber materials were carried out. The parameters for the Mooney–Rivlin model of the rubber material used in LRBs were determined and the time-varying law of basic performance of LRBs was obtained based on test results of LRBs and their rubber material. Then, the determined rubber material parameters were applied into the finite-element model of LRBs to verify the basic performance degradation law of the LRBs. Finally, the obtained basic performance degradation law of LRBs was substituted into the finite model of offshore bridges to investigate the impact of the property degradation of LRBs on their seismic performance. The time-varying law of seismic performance of offshore bridge structures was also studied based on finite element analysis. The results show that both the horizontal and vertical stiffness of LRBs increase with the alternating of aging and seawater erosion time, and the horizontal and vertical stiffness increase by 16.1% and 24.3%, respectively, during the 120-year service period. Additionally, the Mooney–Rivlin model parameters of the LRB rubber material are also significantly affected by the alternating of aging and seawater erosion. Additionally, the results also indicate the deterioration of LRBs has a great influence on the anti-seismic performance of offshore bridge structures. After 120 years of service of offshore bridge isolation bearings under the alternating of aging and seawater erosion, the maximum displacement of the pier top of the offshore bridges, the maximum bending moment at the pier bottom, and the maximum displacement of the rubber bearing increased by 14.2%, 6.6%, and 9.1%, respectively. The findings of this paper play an important role in the seismic behavior study and the life-cycle performance analysis of offshore traffic projects such as sea-crossing bridges in marine environments. At the same time, they also lay a theoretical foundation for the performance analysis of rubber isolation bearings and offshore bridge structures under the alternation of aging and seawater erosion cycles.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

Guangdong Key Laboratory of Earthquake Engineering & Applied Technique

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference40 articles.

1. Test study on mechanical property of different type of isolators for bridge;Shen;China Civ. Eng. J.,2012

2. Experimental study on mechanical property of high damping rubber bearing for bridge;Zhuang;Earthq. Eng. Eng. Vib.,2006

3. Evaluation for Mechanical Properties of Laminated Rubber Bearings Using Finite Element Analysis;Akihiro;J. Press. Vessel. Technol.,2004

4. Experimental Studies on Durability of base isolation of using Laminated Rubber Bearings;Xu;Eathq. Resist. Eng.,1995

5. Prediction of aging characteristics in natural rubber bearings Used in Bridges;Itoh;J. Bridge Eng.,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3