Abstract
This work proposes a metaheuristic-based approach for hyperparameter selection in a multilayer perceptron to classify electromyographic signals. The main goal of the study is to improve the performance of the model by optimizing four important hyperparameters: the number of neurons, the learning rate, the epochs, and the training batches. The approach proposed in this work shows that hyperparameter optimization using particle swarm optimization and gray wolf optimizer significantly improves the performance of a multilayer perceptron for classifying EMG motion signals. The final model achieved an average classification rate of 93% for the validation phases. The results obtained are promising and suggest that the proposed approach may be helpful for the optimization of deep learning models in other signal processing applications.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献