Abstract
This study will present a comprehensive review of the two-phase flow boiling heat transfer coefficient of hydrocarbons such propane (R-290), butane (R-600) and iso-butane (R-600a) and ethanol at various experimental conditions. Studying the multiphase flow heat transfer coefficient has a crucial importance for many heat transfer equipment to achieve higher efficiency for more compact design and cost reduction. One reason behind choosing hydrocarbons as refrigerants in this study is because hydrocarbons have zero ozone depletion potential (ODP=0) and insignificant direct global warming potential (GWP = 3). Moreover, thermodynamic and thermophysical characteristics of hydrocarbons qualify them to be a strong candidate for more heat transfer applications. Initially, by constructing a database for the working fluids from various experimental work available in the literature. The current data that this study has collected for the flow boiling of spans wide ranges of parameters, such as: mass flux, heat flux, operating pressure, and saturation temperature, etc. Furthermore, by comparing the experimental multiphase heat transfer coefficient database with the anticipated values of each correlation, the prediction performance of 26 correlations found in the literature was assessed. This study leads to the selection of the best prediction method based on the minimum deviation of predicted results from the experimental database provided by calculated mean absolute error (MAE) from the assessed correlations. The findings of this study can also be useful in the development of more accurate correlation methods for these fluids and improve the prediction of their flow boiling characteristics.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献