A Systematic Review on Heat Transfer and Pressure Drop Correlations for Natural Refrigerants

Author:

Carella Alberta1,D’Orazio Annunziata1

Affiliation:

1. Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

Due to environmental concerns, natural refrigerants and their use in refrigeration and air conditioning systems are receiving more attention from manufacturers, end users and the scientific community. The study of heat transfer and pressure drop is essential for accurate design and more energy efficient cycles using natural refrigerants. The aim of this work is to provide an overview of the latest outcomes related to heat transfer and pressure drop correlations for ammonia, propane, isobutane and propylene and to investigate the current state of the art in terms of operating conditions. Available data on the existing correlations between heat transfer coefficients and pressure drops for natural refrigerants have been collected through a systematic search. Whenever possible, validity intervals are given for each correlation, and the error is quantified. It is the intention of the authors that this paper be a valuable support for researchers and an aid to design, with particular reference to heat pumps. A procedure based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was adopted, and the Scopus database was used to query the relevant literature. A total of 135 publications qualified for inclusion in the survey; 34 articles report experimental investigations for unusual geometric conditions. Of the 101 selected papers related to usual geometric conditions, N = 50 deal only with HTC, N = 16 deal only with pressure drop and the remainder (N = 35) analyse both HTC and pressure drop. Among the 85 HTC papers, N = 53 deal with the evaporating condition, N = 30 with condensation and only N = 2 with the heat transfer correlations under both conditions. Most of the 101 articles concern propane and isobutane. The high temperatures are less widely investigated.

Funder

Ministero dell’Università e della Ricerca MUR

Publisher

MDPI AG

Reference231 articles.

1. Council of the European Union (2023). Proposal for a Regulation of the European Parliament and of the Council on Fluorinated Greenhouse Gases, Amending Directive (EU) 2019/1937 and Repealing Regulation (EU) No 517/2014, European Commission. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=consil%3AST_14409_2023_INIT.

2. Local Measurements in Heat Exchangers: A Systematic Review and Regression Analysis;Sunden;Heat Transf. Eng.,2021

3. Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment);Cavallini;Int. J. Refrig.,2013

4. Flow boiling of ammonia and hydrocarbons: A state-of-the-art review;Thome;Int. J. Refrig.,2008

5. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration;Liberati;BMJ Clin. Res. Ed.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3