Automatic Diagnosis of Epileptic Seizures using Entropy-based Features and Multimodel Deep Learning Approaches

Author:

Al-Qazzaz Noor,Alrahhal Maher,Jaafer Sumai,Ali SawalORCID,Ahmad SitiORCID

Abstract

One of the most prevalent brain diseases, epilepsy is characterized by recurring seizures that happen quite frequently. During seizures, a patient suffers uncontrollable muscle contractions that cause loss of motion and balance, which could lead to harm or even death. Establishing an automatic method for warning patients about impending seizures requires extensive research. It is possible to anticipate seizures by analyzing the Electroencephalogram (EEG) signal from the scalp region of the human brain. Time domain-based features such as Hurst exponent (Hur), Tsallis Entropy (TsEn), improved permutation entropy (impe), and amplitude-aware permutation entropy (AAPE) were extracted from EEG signals. In order to diagnose epileptic seizure children from normal children automatically, this study conducted two sessions, in the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), while in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers including a gated recurrent unit (GRU), long short-term memory (LSTM), and bidirectional (BiLSTM). The EEG dataset obtained from the Neurology Clinic at the Ibn-Rushd Training Hospital. In this regard, detailed explanations and research from the time domain and entropy characteristics show that using GRU, LSTM, and BiLSTM RNN deep learning classifiers on the All−time−entropy fusion feature improves the final classification results.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3