Abstract
Biodegradable poly(ɛ-caprolactone) (PCL) and its composites or blends have gotten a lot of attention in the last decade because of their potential applications in human life and environmental remediation. As a result, there is a growing interest in the synthesis of PCL-composites/blends and their applications. Greater efforts have been made to develop biodegradable chemical materials as adsorbents that do not pollute the environment in order to replace traditional materials. Among the numerous types of degradable materials, PCL is currently the most promising, the most popular, and the best material to be developed, and it is referred to as the "green" eco-friendly material. Membranes and adsorbents for water treatment, packaging and compost bags, controlled drug carriers, biomaterials for tissues such as bone, cartilage, ligament, skeletal muscle, skin, cardiovascular and nerve tissues are just some of the applications of this biodegradable polymer (PCL). The goal of this review is to present a brief overview of PCL, its properties, syntheses of PCL, PCL composites, and PCL blends, but to provide a detailed investigation into the utility of PCL/PCL-based adsorbing agents in the removal of dyes/heavy metal ions.