Abstract
Wearing gloves while operating machinery in workshops is an essential precaution to prevent mechanical injuries and burns from high temperatures, among other potential hazards. Ensuring workers are properly equipped with gloves, which is a crucial measure in accident prevention. Glove images often occupy a minimal proportion of the frame and are easily obscured by cluttered backgrounds, especially with limited edge computing resources. Consequently, this study proposes a glove detection algorithm called YOLOv8-AFPN-M-C2f based on YOLOv8, offering swifter detection speeds, lower computational demands, and enhanced accuracy for workshop scenarios. This research innovates by substituting the head of YOLOv8 with the AFPN-M-C2f network, amplifying the pathways for feature vector propagation, and mitigating semantic discrepancies between non-adjacent feature layers. Additionally, the introduction of a superficial feature layer enriches surface feature information, augmenting the model's sensitivity to smaller objects. To assess the performance of the YOLOv8-AFPN-M-C2f model, we conducted multiple experiments using a factory glove detection dataset compiled for this study. The results indicate that the enhanced YOLOv8 model surpasses other network models. Compared to the baseline YOLOv8 model, the refined version shows a 2.6% increase in mAP@50%, a 90.1% rise in FPS, and a 13% reduction in the number of parameters. This research contributes an effective solution for the detection of glove adherence.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献