Can Large Language Models (LLMs) Predict the Appropriate Treatment of Acute Hip Fractures in Older Adults? Comparing Appropriate Use Criteria With Recommendations From ChatGPT

Author:

Nietsch Katrina S.ORCID,Shrestha Nancy,Mazudie Ndjonko Laura C.,Ahmed Wasil,Mejia Mateo Restrepo,Zaidat Bashar,Ren Renee,Duey Akiro H.,Li Samuel Q.,Kim Jun S.,Hidden Krystin A.,Cho Samuel K.

Abstract

Background: Acute hip fractures are a public health problem affecting primarily older adults. Chat Generative Pretrained Transformer may be useful in providing appropriate clinical recommendations for beneficial treatment. Objective: To evaluate the accuracy of Chat Generative Pretrained Transformer (ChatGPT)-4.0 by comparing its appropriateness scores for acute hip fractures with the American Academy of Orthopaedic Surgeons (AAOS) Appropriate Use Criteria given 30 patient scenarios. “Appropriateness” indicates the unexpected health benefits of treatment exceed the expected negative consequences by a wide margin. Methods: Using the AAOS Appropriate Use Criteria as the benchmark, numerical scores from 1 to 9 assessed appropriateness. For each patient scenario, ChatGPT-4.0 was asked to assign an appropriate score for six treatments to manage acute hip fractures. Results: Thirty patient scenarios were evaluated for 180 paired scores. Comparing ChatGPT-4.0 with AAOS scores, there was a positive correlation for multiple cannulated screw fixation, total hip arthroplasty, hemiarthroplasty, and long cephalomedullary nails. Statistically significant differences were observed only between scores for long cephalomedullary nails. Conclusion: ChatGPT-4.0 scores were not concordant with AAOS scores, overestimating the appropriateness of total hip arthroplasty, hemiarthroplasty, and long cephalomedullary nails, and underestimating the other three. ChatGPT-4.0 was inadequate in selecting an appropriate treatment deemed acceptable, most reasonable, and most likely to improve patient outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3