Application of laser Scribed method to fabricate graphene/graphene oxide multilayer

Author:

Namdar M.,Kh. Asl Sh.

Abstract

Graphene is a flat layer of carbon atom, and is a layer of graphite with a thickness of a few tenths of a nanometer that due to its porous structure and high ionic transfer rate, it has been considered in electronic applications, such as cloud storage capacitors with high energy. In this research work, laser scribed technique has been regarded to synthesize grapheme on the surface of a DVD and manufacture graphene and graphene composite super capacitors with Molybdenum disulfide. For this purpose, first, by Hummer’s method, graphite was converted to graphene oxide (GO) in an acidic environment containing Sodium nitrate, Potassium permanganate and sulfuric acid. Centrifuges and ultrasonic devices were utilized for the homogenization of graphene oxide solution. GO homogeneous solution was applied on the surface of specific DVDs and the set was dried at room temperature. For GO reduction and transform it into graphene, a suitable laser, with programming of super capacitor particular pattern was used. By applying energy with the amount of resonance frequency of graphene and oxygen bond, the laser broke the connection and the reduction action and reaching to graphene was done. Thus, the optimal wavelength of laser was determined to reduce the GO. In this study, the process of graphene synthesis and applying the super capacitor specific pattern were carried out in single step that is the biggest advantage of laser scribed graphene (LSG) method. In present study, TEM was utilized to examine the layered structure of GO, SEM was used for microstructural studies the XPS was used to investigate elements present in the layer applied on DVD, and the Raman spectroscopy was applied to investigate the quality of prepared graphene through studying G and D peaks., two tests of cyclic voltammetry (CV) and Galvano static charge/discharge (CC) were applied to study the performance and power of energy storage in super capacitors, Finally the long-term charge-discharge stability of the LSG was plotted which indicates that specific capacitance has decreased very slightly from its primary capacitance of ~ 10 F cm-3 and its cyclic stability is favorable over 1000 cycles.

Publisher

Iraqi Forum for Intellectuals and Academics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Porous InGaN-based metal-semiconductor-metal: Morphology and optical studies;Experimental and Theoretical NANOTECHNOLOGY;2022-10-22

2. Structural and optical studies of nanocrystallined CdS;Experimental and Theoretical NANOTECHNOLOGY;2022-08-16

3. Structural properties of CdSe nanocrystals in CdSe/Se multilayer;Experimental and Theoretical NANOTECHNOLOGY;2021-05-15

4. Solar energy harvesting efficiency of nano-antennas;Experimental and Theoretical NANOTECHNOLOGY;2020-09-15

5. Structural and optical properties of lead iodide nanostructure synthesized by vacuum evaporation method;Experimental and Theoretical NANOTECHNOLOGY;2020-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3