Author:
Hagiwara Hayato, ,Touma Yasufumi,Asami Kenichi,Komori Mochimitsu
Abstract
<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00270006/10.jpg"" width=""300"" /> Mobile robot with a stereo vision</div>This paper describes an autonomous mobile robot stereo vision system that uses gradient feature correspondence and local image feature computation on a field programmable gate array (FPGA). Among several studies on interest point detectors and descriptors for having a mobile robot navigate are the Harris operator and scale-invariant feature transform (SIFT). Most of these require heavy computation, however, and using them may burden some computers. Our purpose here is to present an interest point detector and a descriptor suitable for FPGA implementation. Results show that a detector using gradient variance inspection performs faster than SIFT or speeded-up robust features (SURF), and is more robust against illumination changes than any other method compared in this study. A descriptor with a hierarchical gradient structure has a simpler algorithm than SIFT and SURF descriptors, and the result of stereo matching achieves better performance than SIFT or SURF.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference31 articles.
1. K. Asami, H. Hagiwara, and M. Komori, “Visual Navigation System Based on Evolutionary Computation on FPGA for Patrol Service Robot,” Proc. of the 1st IEEE Global Conf. on Consumer Electronics, pp. 169-172, Chiba, Japan, October 2-5, 2012.
2. H. P. Moravec, “Towards Automatic Visual Obstacle Avoidance,” Proc. of Int. Joint Conf. on Artificial Intelligence (5th: Massachusetts Institute of Technology), p. 584, 1977.
3. C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Proc. of 4th Alvey Vision Conf., Manchester, U.K., pp. 147-151, Aug. 1988.
4. D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int. J. of Computer Vision, Vol.60, No.2, pp. 91-110, January 2004.
5. H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded Up Robust Features,” Proc. of the 9th European Conf. on Computer Vision, May 2006.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献