Development of Autonomous Navigation System Using 3D Map with Geometric and Semantic Information

Author:

Aotani Yoshihiro, ,Ienaga Takashi,Machinaka Noriaki,Sadakuni Yudai,Yamazaki Ryota,Hosoda Yuki,Sawahashi Ryota,Kuroda Yoji

Abstract

This paper presents an autonomous navigation system. Our system is based on an accurate 3D map, which includes “geometric information” (e.g., curb, wall, street tree) and “semantic information” (e.g., sidewalk, roadway, crosswalk) extracted by environmental recognition. By using the semantic map, we can obtain the suitable area to keep away from undesired places. Furthermore, by comparing the map with real-time 3D geometric information from LIDAR, we obtain the robot position. To show the effectiveness of our system, we conduct a 3D semantic map construction experiment and driving test. The experiment results show that the proposed system enables accurate and highly reproducible localization and stable autonomous mobility.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference18 articles.

1. R. Kümmerle et al., “Autonomous robot navigation in highly populated pedestrian zones,” J. of Field Robotics, Vol.32, No.4, pp. 565-589, 2015.

2. A. Krizhevsky, S. Ilya, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, 2012.

3. B. Zhou et al., “Learning deep features for scene recognition using places database,” Advances in neural information processing systems, 2014.

4. T. Hagiwara, D. Katakura et al., “Development of a stable navigation system in the known environment by using autonomous 3D map construction,” The 16th SICE System Integration Division Annual Conf., pp. 811-814, 2015 (in Japanese).

5. S. Rusinliewicz and M. Levoy, “Efficient variants of the ICP algorithm,” Proc. of the Int. Conf. on 3-D Digital Imaging and Modeling (3DIM), pp. 145-152, 2001.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3