Teleoperating Assistive Robots: A Novel User Interface Relying on Semi-Autonomy and 3D Environment Mapping
-
Published:2017-04-20
Issue:2
Volume:29
Page:381-394
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Materna Zdeněk, ,Španěl Michal,Mast Marcus,Beran Vítězslav,Weisshardt Florian,Burmester Michael,Smrž Pavel, ,
Abstract
[abstFig src='/00290002/11.jpg' width='300' text='User-assisted pick and place task' ] Despite remarkable progress of service robotics in recent years, it seems that a fully autonomous robot which would be able to solve everyday household tasks in a safe and reliable manner is still unachievable. Under certain circumstances, a robot’s abilities might be supported by a remote operator. In order to allow such support, we present a user interface for a semi-autonomous assistive robot allowing a non-expert user to quickly asses the situation on a remote site and carry out subtasks which cannot be finished automatically. The user interface is based on a mixed reality 3D environment and fused sensor data, which provides a high level of situational and spatial awareness for teleoperation as well as for telemanipulation. Robot control is based on low-cost commodity hardware, optionally including a 3D mouse and stereoscopic display. The user interface was developed in a human-centered design process and continuously improved based on the results of five evaluations with a total of 81 novice users.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference41 articles.
1. L. Pigini, D. Facal, A. Garcia, M. Burmester, and R. Andrich, “The proof of concept of a shadow robotic system for independent living at home,” Computers Helping People with Special Needs, pp. 634-641, Springer, 2012. 2. R. Qiu, Z. Ji, A. Noyvirt, A. Soroka, R. Setchi, D. T. Pham, S. Xu, N. Shivarov, L. Pigini, G. Arbeiter et al., “Towards robust personal assistant robots: Experience gained in the srs project,” 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1651-1657, 2012. 3. M. Mast, M. Burmester, K. Krüger, S. Fatikow, G. Arbeiter, B. Graf, G. Kronreif, L. Pigini, D. Facal, and R. Qiu, “User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home,” J. of HRI, Vol.1, No.1, 2012. 4. U. Reiser, C. Pascal Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weisshardt, T. Jacobs, C. Parlitz, M. Hägele, and A. Verl, “Care-o-bot® 3-creating a product vision for service robot applications by integrating design and technology,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Vol.9, pp. 1992-1998, 2009. 5. M. Mast, Z. Materna, M. Španěl, F. Weisshardt, G. Arbeiter, M. Burmester, P. Smrž, and B. Graf, “Semi-autonomous domestic service robots: Evaluation of a user interface for remote manipulation and navigation with focus on effects of stereoscopic display,” Int. J. of Social Robotics, Vol.7, No.2, pp. 183-202, 2015.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|