Compliant Walking Control for Hydraulic Driven Hexapod Robot on Rough Terrain

Author:

Irawan Addie, ,Nonami Kenzo,

Abstract

This article describes the proposed force-based walking method for hydraulically driven hexapod robot named COMET-IV, to walk on the large scale rough terrain. The trajectory is designed where foot step motion for each leg is decided by vertical force on the foot that is calculated from cylinder torque of thigh and shank. This proposed walking trajectory is established with compliant control strategy, which consists of force control based on position range from the trajectory motion signal. This force controller is dynamically control ON/OFF by proposed decision algorithms that derived from the changes of kinematic motion of the trajectory itself. In addition logical attitude (body) control is designed as a part of the decision control module that makes a pre-calculation of decision making based on leg sequence changes. For more stability dynamic swings raising control is derived from trajectory equations to perform a different degree of swing rising for each leg when the robot stepping on the different level of terrain. All proposed controllers are verified in the COMET-IV actual system with walking on the designed rough terrain platform consists of random levels of hard bricks and rubber pads.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Foot–Terrain Interaction Mechanics for Heavy-Duty Legged Robots;Applied Sciences;2024-07-26

2. Gait Planning and Foot-Terrain Mechanical Model Analysis of Hexapod Robot;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

3. A Novel Double-Layered Central Pattern Generator-Based Motion Controller for the Hexapod Robot;Mathematics;2023-01-26

4. Design conceptualization and kinematic analysis of locomotion gait for a caterpillar-inspired robot;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

5. Power Consumption Comparison Between Mammal-Type and Reptile-Type Multi-Legged Robots During Static Walking;2022 IEEE/SICE International Symposium on System Integration (SII);2022-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3