Modeling and Mechanical Design of an Active-Caster Omnidirectional Mechanism with a Ball Transmission

Author:

Kato Kosuke, ,Wada Masayoshi

Abstract

This paper presents kinematic and static analyses of an active-caster robotic drive with a single-layer ball transmission (ACROBAT-S). On the basis of the analyses, a single-wheel prototype is designed, and fundamental experiments using the prototype are conducted. The proposed ACROBAT-S includes a ball transmission that transmits power to a wheel axis and steering axis of an active-caster wheel in an appropriate ratio to produce so-called “caster motion.” The power distribution is realized mechanically rather than by complicated computer control algorithms. Therefore, the angle sensor for detecting the wheel orientation, and the control calculations for coordinated control of the wheel and steering motors of a conventional system are eliminated. Thus, the proposed mechanical design, which transfers a part of the control function to the mechanism, contributes to simplifying the overall control system. The results of the analyses and experiments with a prototype confirm that the proposed active-caster mechanism, ACROBAT-S, can realize the expected omnidirectional motion with simple motor control, such as Point-To-Point control.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3